Category Archives: Math Software

Cross Number Puzzles

We live in a golden age of number puzzles. Sudoku is probably the most famous of all modern-day number puzzles, but there are many Japanese puzzles that are also gaining popularity, such as KenKen and Menseki Meiro. In this post, I'd like to introduce a number puzzle for young learners that predates … Continue Reading ››

Enhancing Web Sketchpad

As a longtime Sketchpad fan, one of the most interesting features of Web Sketchpad (WSP) for me is the way its behavior can be customized. WSP makes it possible to add JavaScript to a web page in order to interact directly with objects in the sketch. For instance, a JavaScript function could use the locations … Continue Reading ››

Exploring Multiples on a Dynamic Number Grid

What would it take to build a better number grid for young learners? A typical number grid contains 10 columns with the numbers progressing from 1-10, 11-20, 21-30 and so on, from row to row. We decided to upend this tradition and make a dynamic number grid with Web Sketchpad that allows students to choose … Continue Reading ››

Digging Deep Into Varignon’s Theorem

In the interactive websketch below (and here on its own page), ABCD is an arbitrary quadrilateral whose midpoints form quadrilateral EFGH. Drag any vertex of ABCD. What do you notice about EFGH? The midpoint quadrilateral theorem, attributed to the French mathematician Pierre Varignon, is relatively new in the canon of geometry theorems, dating to 1731. Mathematics educator Chris Pritchard … Continue Reading ››

Function Dances at NCTM

At the 2017 NCTM Annual Meeting I was invited to do a short Wednesday-afternoon presentation on Function Dances in the NCTM Networking Lounge. (Here's the handout from the presentation.) The idea of function dances is to get students (or in this case teachers) moving around, acting as the independent and dependent … Continue Reading ››

Revisiting the Isosceles Triangle Challenge

In my last post, I presented a lovely geometry problem from Japan that was ideally suited to a dynamic geometry approach. Below is a new problem whose construction is nearly identical to the original one. The text says, "Five isosceles triangles have their bases on one line, and there are 10 rhombi. One length of the rhombus … Continue Reading ››

A Geometry Challenge from Japan

Here is a wonderful geometry problem from Japan: The five triangles below are all isosceles. The quadrilaterals are all rhombi. The shaded quadrilateral is a square. What is the area of the square? I wondered at first whether the English translation of the problem was correct because with so many side … Continue Reading ››

Creating Animated Factorization Diagrams

Last year, I had the pleasure of co-organizing a geometry-focused coaching collaborative led by Metamorphosis, a New York-based organization that offers professional content coaching to transform the mindset and practices of teachers and administrators. I had so much fun that I decided to do it again! My workshop partners were Metamorphosis staffers Toni Cameron, Ariel Dlugasch, … Continue Reading ››

Stars, Polygons, and Multiples

I've always found my collaborations with teachers to be a great inspiration for curriculum development, and that was especially true of my work with Wendy Lovetro, an elementary-school teacher in Brooklyn, NY. Wendy coordinated an after-school math club at her school, and I used the setting as an opportunity to develop and field test Sketchpad activities for the … Continue Reading ››

Raz’s Magic Multiplying Machine

Here is a question you don't hear very often: What does it feel like to experience multiplication in our bodies? It's a strange question because our typical exposure to multiplication is numerical. I give you two numbers—say, 3 and 5—and you tell me their product, 15. But multiplication need need not be so static and concrete. Back … Continue Reading ››