This post, inspired by the work of Al Cuoco, uses Web Sketchpad to explore a transformations approach to complex numbers.
Category Archives: Geometry
Special Quadrilaterals and Their Diagonals
Given two segments and their midpoints, what quadrilaterals can you build using the segments as the diagonals of the quadrilateral?
The Origami-Math Connection
This post examines the connections between origami and geometry in the context of a new book written by Daniel Scher and Marc Kirschenbaum.
Hats Off to This Aperiodic Tiling
This post examines the role of social media in promoting the discovery of an aperiodic monotile.
Transformation Dances
This post presents virtual dances based on geometric transformations. As a penguin travels around a polygon, you, as a frog, must match its movements, but with the added challenge of dancing as a reflection, rotation, or dilation of the penguin’s path.
Transformation Games
This post presents an abundance of games that find their inspiration in three geometric transformations: reflection, rotation, and dilation.
Generalizing the Pythagorean Theorem
In geometry, we learn that if we erect squares on the legs of a right triangle, the sum of their areas is equal to the area of the square on the triangle's hypotenuse. This is visual way to conceptualize the Pythagorean Theorem. But now consider the image below that shows a bust of … Continue Reading ››
A Bevy of Rhombus Constructions
In how many ways can you use dynamic geometry software to build a rhombus that stays a rhombus when its vertices are dragged? This challenge, a mainstay of Sketchpad workshops, invariably leads to great discussions because there are a multitude of ways to construct a rhombus, with each method highlighting different mathematical properties … Continue Reading ››
Euclid Walks the Plank
Using Web Sketchpad, students construct a boardwalk path of equal-length planks to explore the key concepts behind Euclid’s Proposition 1.
Exploring Scaled Polygons
Below are some common methods that geometry curricula offer for constructing scaled polygons:
- Place a polygon on the coordinate plane, pick the origin as the center of dilation, scale each vertex by some specified amount by using its coordinates, and then connect the scaled vertices.