In my January 2020 blog post, I presented a collection of Web Sketchpad construction challenges where the goal was to use each handpicked set of tools to build a rhombus. Could you, for example, construct a rhombus with just a Compass and Parallel tool? How about starting with merely the Reflect … Continue Reading ››

# Tag Archives: Geometry

# A Paper Folding Investigation from Connected Geometry

In a prior post, I shared some good news: The *Connected Geometry* high-school curriculum authored by Education Development Center (EDC) is now available for free. I could easily devote every future blog post to a tasty *Connected Geometry* morsel, but I'll restrict myself to just a few. The * *investigation … Continue Reading ››

# Connected Geometry

It's that time of year when we start seeing "best of" lists for books, movies, music and the like. In that spirit, but stretching way beyond the past year, some of my favorite geometry textbooks include *Geometry: Seeing, Doing, Understanding* (Harold Jacobs), *Discovering Geometry* (Michael Serra), and *Geometry: A Transformation … Continue Reading ››*

*Symmetry Challenges*

*In his online article Simply Symmetric, Michael de Villiers observes that symmetry is a powerful but often overlooked tool for formulating proofs:*

Most primary geometry curricula around the world introduce the concept of line symmetry fairly early, and sometimes also that of rotational, translational and glide reflective symmetry. … Continue Reading ››

*The Swimming Pool Problem*

*In a prior blog post, I presented an uncommon method for solving the well-known Burning Tent problem. My solution, modeled on the approach in the Connected Geometry curriculum, used a dynamic ellipse to pinpoint the optimal solution. Now, I'd like to offer a related problem from Connected Geometry where … Continue Reading ››*

*A Follow-Up to the Interior Angle Sum*

*This post is a follow-up to Sarah Stephens' guest post of a week ago, in which she described a lesson using embodied cognition to help students make sense of the interior angle sum theorem for triangles, not just as an abstract concept, but as a property grounded in their concrete physical experiences.*

*Protect the Sheep*

*A game of enclosing sheep and wolves in fences helps children to develop their conceptual understanding of polygons.*

*The Varied Paths to Constructing a Rhombus*

*In how many different ways can you build a rhombus that stays a rhombus when its vertices are dragged? This assignment, a mainstay of Sketchpad workshops, invariably leads to great discussions because there are a multitude of ways to construct a rhombus, with each method highlighting different mathematical properties of the quadrilateral.*

*The Perimeter Problem*

*When the Metamorphosis team of content coaches meet at their New York office, the day is filled with Qi Gong, video case analysis, good food, and—best of all—a mathematical challenge for everyone to investigate and discuss. These problems are chosen to be accessible across a wide range of grade levels and to allow for a variety … Continue Reading ››*

*Pythagoras Plugged In*

*If there were an award for 'Mathematical Theorem Most Amenable to a Visual Proof,' the Pythagorean Theorem would surely win. The title of this post is a nod to the Sketchpad activity module Pythagoras Plugged In by Dan Bennett. Dan's book contains 18 visual, interactive proofs of the Pythagorean Theorem. And there are more: The Pythagorean … Continue Reading ››*