It's that time of year when we start seeing "best of" lists for books, movies, music and the like. In that spirit, but stretching way beyond the past year, some of my favorite geometry textbooks include *Geometry: Seeing, Doing, Understanding* (Harold Jacobs), *Discovering Geometry* (Michael Serra), and *Geometry: A Transformation … Continue Reading ››*

# Category Archives: Geometry

*Symmetry Challenges*

*In his article Simply Symmetric, Michael de Villiers observes that symmetry is a powerful but often overlooked tool for formulating proofs:*

Most primary geometry curricula around the world introduce the concept of line symmetry fairly early, and sometimes also that of rotational, translational and glide reflective symmetry. … Continue Reading ››

*The Swimming Pool Problem*

*In a prior blog post, I presented an uncommon method for solving the well-known Burning Tent problem. My solution, modeled on the approach in the Connected Geometry curriculum, used a dynamic ellipse to pinpoint the optimal solution. Now, I'd like to offer a related problem from Connected Geometry where … Continue Reading ››*

*Introducing Web Sketchpad at the 2021 NCTM Annual Meeting*

*NCTM’s Virtual 2021 Annual Meeting ran from April 21 through May 1, and in Session 299 Daniel Scher, Karen Hollebrands, and I presented an on-demand video workshop to introduce Web Sketchpad (WSP). Even if you weren't able to attend the conference, you can still take … Continue Reading ››*

*A Follow-Up to the Interior Angle Sum*

*This post is a follow-up to Sarah Stephens' guest post of a week ago, in which she described a lesson using embodied cognition to help students make sense of the interior angle sum theorem for triangles, not just as an abstract concept, but as a property grounded in their concrete physical experiences.*

*The Interior Angle Sum: An Embodied Investigation*

*[This guest post by Sarah Stephens, a senior at Pennsylvania State University, describes a lesson she created as part of her Senior Honors Thesis on leveraging embodied cognition to help students develop abstract mathematical concepts.]*

*As a soon-to-be classroom mathematics teacher, I have taken special interest in the field of … Continue Reading ››*

*Protect the Sheep*

*A game of enclosing sheep and wolves in fences helps children to develop their conceptual understanding of polygons.*

*Constructing the Pi-Petal Rose*

*When I was introduced to radian measure in high school, I knew just one thing: How to convert between radians and degrees. Had you asked me to illustrate a radian on a circle or to explain why radian measure was useful, I would have been stumped.*

*In this post, I'll describe a Web Sketchpad activity … Continue Reading ››*

*The Varied Paths to Constructing a Rhombus*

*In how many different ways can you build a rhombus that stays a rhombus when its vertices are dragged? This assignment, a mainstay of Sketchpad workshops, invariably leads to great discussions because there are a multitude of ways to construct a rhombus, with each method highlighting different mathematical properties of the quadrilateral.*

*Catching Up with New Web Sketchpad Functionality*

*This past January, we introduced the Web Sketchpad Tool Library and Viewer. The Tool Library is a collection of over 60 mathematical tools for customizing a Web Sketchpad model, making it possible for teachers to decide which tools students have available to them on an activity-by-activity basis. The Viewer is a site … Continue Reading ››*