In a prior post, I shared some good news: The Connected Geometry high-school curriculum authored by Education Development Center (EDC) is now available for free. I could easily devote every future blog post to a tasty Connected Geometry morsel, but I'll restrict myself to just a few. The investigation … Continue Reading ››
Category Archives: Math Software
The Polar-Cartesian Connection
The Web Sketchpad model below (and here) shows the function f(θ) = 1 – cos 2θ in both Cartesian and polar form. For each graph, the independent variable appears as a red bar that corresponds to a particular value of x (for Cartesian) or θ (for polar). The red bar has … Continue Reading ››
The Cowgirl Problem
In a previous post, I described two different approaches to solving the Burning Tent optimization problem. Now I'd like to offer a related problem that I assigned many years ago to my pre-service mathematics teachers at New York University.
A cowgirl wants to give her horse some food and … Continue Reading ››
Introducing Web Sketchpad at the 2021 NCTM Annual Meeting
Race to the Burning Tent
How can you identify a lover of math? Casually mention a burning tent and notice if her first thought is how to minimize her path to a river and then to the tent to douse the flames. Here is a full statement of this classic geometry problem:
Ah, the great … Continue Reading ››
Pirate Treasure Awaits
In a 2018 blog post, I presented George Gamow's pirate treasure problem, which can neatly be solved by capitalizing on the geometry of complex numbers. There's more treasure to be had, however, so get ready for another adventure!
An island contains a giant boulder, a lighthouse, a cave, and a jail. Among … Continue Reading ››
Protect the Sheep
A game of enclosing sheep and wolves in fences helps children to develop their conceptual understanding of polygons.
Revisiting the Hundred Chart
With a few adjustments, we can make the Hundred Chart more intuitive and more useful for students. This post explains why the improvements are needed and describes how students can build a physical model that more accurately corresponds to the number system.
A New Twist on Arranging Addends
Of all the original games I've designed, Arranging Addends is among my favorites. On page 1 of the Web Sketchpad model below (and here), you're given five addends—1, 2, 4, 8, and 16—and asked to arrange them in the circles so that the sum of the numbers in each circle matches the values … Continue Reading ››
Tanton’s Two-Pan Balance Puzzle
I'm a big fan of pan-balance puzzles in which you're given a two-pan balance and asked to use it to uncover a counterfeit coin or determine the weight of a coin. One classic example is the following puzzle:
You have 12 coins that all look exactly the same. One is counterfeit and is either heavier … Continue Reading ››